Motion Comparator: Visual Comparison of Robot Motions

Yeping Wang, Alexander Peseckis, Zelong Jiang, and Michael Gleicher

Synopsis: Motion Comparator is a web-based application to visualize, compare, and share robot motions.

Motivation

Roboticists compare robot motions for tasks such as parameter tuning, troubleshooting, and deciding between possible motions

Robot motions are temporally long, spatially complex data, and have complex relationships

Design Process

We design our system by applying a rigorous visual comparison design framework^[1].

Identify roboticist needs

Properties	Cartesian Space	Joint Space	Time

Case Studies

A. Motion Selection after Planning

Task: compare five motions generated using a sampling-based motion planner, TRRT^[3] **Without MC**: play each motion one by one in a visualization tool such as Rviz With MC: quickly exclude extra long motions using position and quaternion traces

human-like

Motion properties extracted from the abstracts of 64,893 papers

Objective	Efficiency Collision-Free/Safeness Smoothness/Continuity Accuracy	•	•	•	
Subjec- tive	Predictability	•		•	
	Legibility	•		٠	
	Human-Like/Natural				

Analyze comparative challenges and strategies

Strategies:

Traces in various spaces Subset selection

Multi-view coordination Temporal alignments

Consider comparative designs

Extra long Cartesian trace

B. Troubleshooting

Task: a Spot robot wipes nearby areas using its arm Without MC: manually develop code to inspect motions With MC: identify the problem in the 3D scene, navigate to the problematic segment using the timeline bar, and troubleshoot using a time-series plot

Defective motion

C. Parameter Tuning for Legible Motions

Task: compare five legible motions generated using different parameter sets (legible motions^[4] clearly communicate the robot's intentions to humans) Without MC: initiate five instances of visualization tools (e.g., Rviz) side-by-side, manually synchronize the camera viewpoints, and manually align the motions in time With MC: the UMAP graph view shows that the motions generated by four parameter sets are close to each other. Instead of comparing all five motions, the roboticist only compares two of them in the 3D scene

Extra long quaternion trace

Multi-View Interface

3D Scene: render robots and their surroundings in simulated 3D environments

Quaternion Space: visualize an object's orientation by projecting quaternions to a 3D space

Joint Trace: use a dimensionality reduc-

movement of all joints of a robot in a line

tion technology (UMAP^[2]) to depict the

D. Review of Motions in Teleoperation

Task: gain insights into different teleoperation strategies, e.g., the ways to pick up a block Without MC: manually navigate through motions to observe how the robot picks up a block With MC: the time warping feature enables the roboticist to quickly align two motions and compare various ways to pick up a block

Time-Series Plot: plot positions in joint space or Cartesian space and their derivatives (velocities, accelerations, and jerks)

Scrubbable Timeline Bar: enable multi-view coordination

Other Features

Web-based interface: lightweight, cross-platform and runs in a browser **ROS integration**: directly parse rosbag files **Time warping**: autonomous temporal alignment **Subset selection**: easily select a subset of a motion by adjusting the selectable region of the timeline bar

Our tool is open-sourced!

3D Scene

[1] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles Hansen, and Jonathan Roberts, "Visual comparison for information visualization", IV'11 [2] Leland McInnes, John Healy, and James Melville, "UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction", ArXiv'18 [3] Didier Devaurs, Thierry Simeon and Juan Cortes, "Enhancing the transition-based RRT to deal with complex cost spaces", ICRA'13 [4] Christopher Bodden, Daniel Rakita, Bilge Mutlu and Michael Gleicher, "A flexible optimization-based method for synthesizing intent-expressive robot arm motion", IJRR'18

This work was supported by National Science Foundation award 2007436, Los Alamos National Laboratory and the Department of Energy.