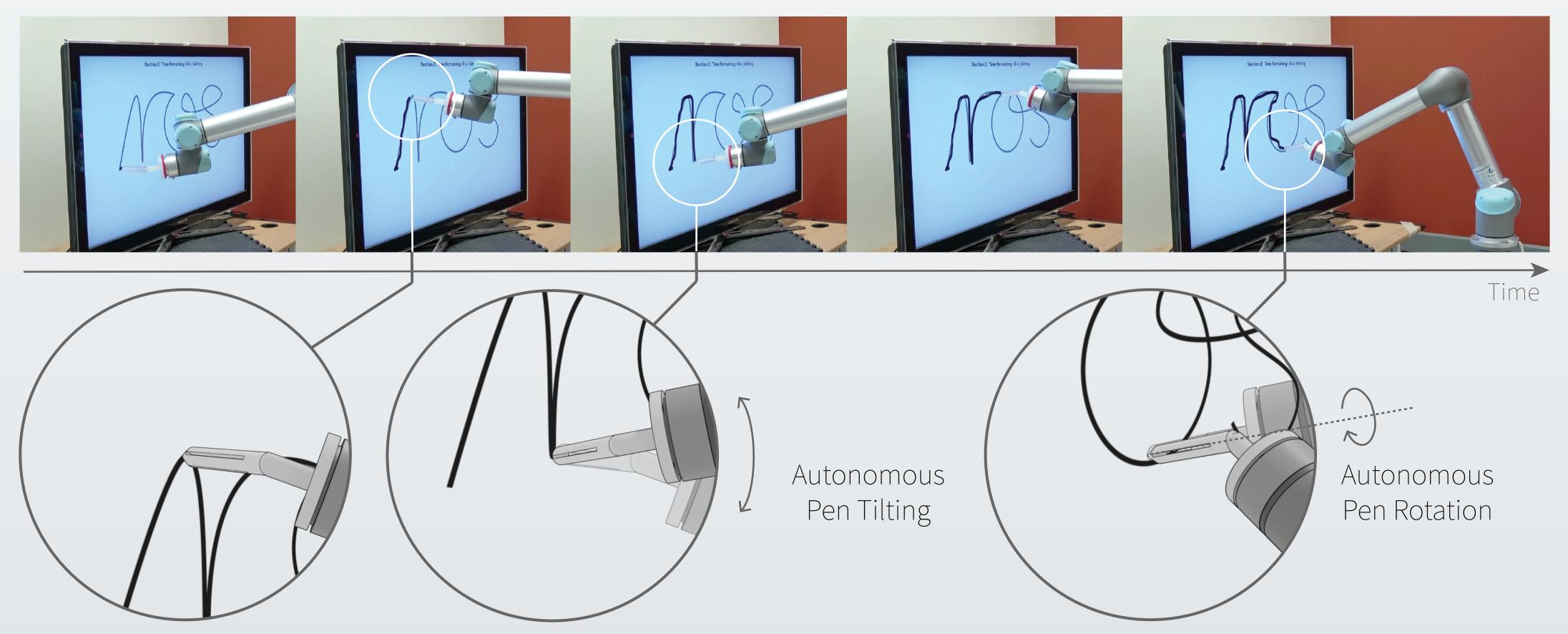


Exploiting Task Tolerances in Mimicry-based Telemanipulation

Synopsis

We explore task tolerances, *i.e.*, allowable position or rotation inaccuracy, as an important resource to facilitate smooth and effective telemanipulation.


Motivation

Exact mimicry may cause the robot to lose manipulability or generate jerky motions because of the kinematic and dynamic differences between the robot and the operator.

Functional Mimicry

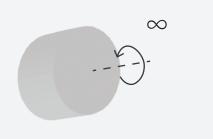
Our *functional* mimicry paradigm allows a robot to autonomously adjust within tolerances to generate more accurate, smooth, and feasible motions^{*}. Task tolerances are the amount of position or rotation inaccuracy allowed to complete a task.

However, the autonomous adjustments mean that the user lacks full control of the robot. *Functional* mimicry may make the user's control less direct.


Yeping Wang, Carter Sifferman, and Michael Gleicher

Hypothesis

In mimicry-based telemanipulation, allowing a robot to autonomously adjust within task tolerances (functional mimicry) will lead to better task performance and user experience than requiring the robot to exactly mimic its human operator (*exact* mimicry), despite users lacking full control of the robot.


Experimental Design

Our user evaluation followed a within-participants design with condition orders being counterbalanced. We recruited 20 participants from a university campus. Our study involves five tasks.

Task tolerances:

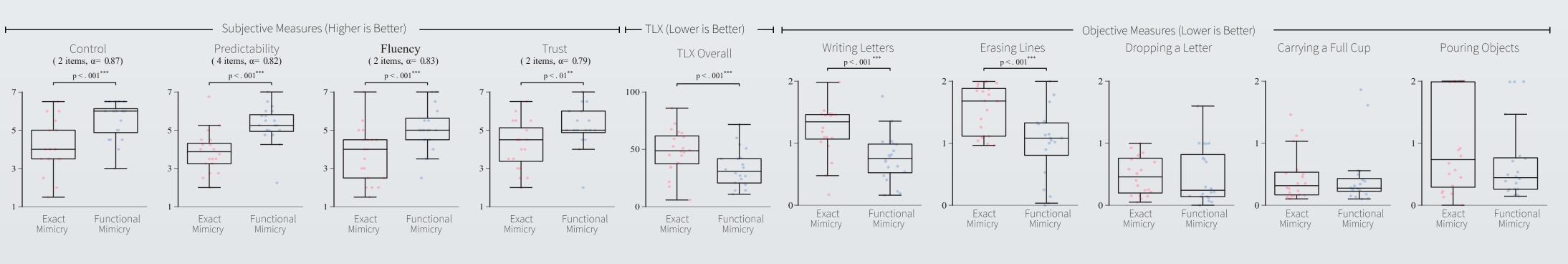
← → 5cm

Task

Writing Lette

Erasing Lines

Dropping an E


Carrying a Ful

Pouring Object

Results

Exploiting flexibility in task tolerances enables

- More accurate, smooth, and feasible motions
- An improvement in perceived control
- Autonomous adjustments within tolerances feel natural to teleoperators
- An improvement in perceived predictability
- Improvements in perceived fluency, and trust
- Equal or better performance

Conclusion

- Exact mimicry can be overly restrictive for some tasks with tolerances.
- Exploiting task tolerances generates high quality robot motions.
- We believe that our interaction paradigm is beneficial to teleoperation of welding, sanding,
- pouring, and many other tasks that allow some positional or rotational inaccuracy.

* The high quality motions in functional mimicry are generated by RangedIK [1], a real-time motion generation method that exploits flexibility afforded by task tolerances. [1] Y. Wang, P. Praveena, D. Rakita, and M. Gleicher, "Rangedik: An optimization-based robot motion generation method for ranged-goal tasks," in 2023 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2023

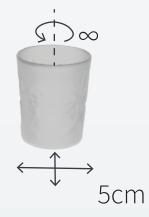


TABLE III MOTION QUALITIE

Morion Quiternes							
	Method	Mean Pos. Error (m)	Mean Rot. Error (rad)	Mean Joint Vel. (rad/s)	Mean Joint Acc. (rad/s ²)	Mean Joint Jerk (rad/s ³)	Mean Mani- pulability
rs	Exact Mimicry Functional Mimicry	$\begin{array}{c} 0.091 \pm 0.085 \\ \textbf{0.006} \pm \textbf{0.009} \end{array}$	N/A [‡] N/A [‡]	$\begin{array}{c} 0.133 \pm 0.05 \\ \textbf{0.076} \pm \textbf{0.04} \end{array}$	1.80 ± 0.7 0.45 \pm 0.2	53.9 ± 19.5 10.5 \pm 5.1	$\begin{array}{c} 0.067 \pm 0.02 \\ \textbf{0.085} \pm \textbf{0.02} \end{array}$
	Exact Mimicry Functional Mimicry	0.093 ± 0.074 0.025 ± 0.020	$0.0204 \pm 0.007 \\ 0.0107 \pm 0.007$	0.240 ± 0.11 0.227 ± 0.08	3.11±1.8 2.23±0.9	91.1±56.3 62.9±26.1	0.060 ± 0.02 0.081 ± 0.02
Envelope	Exact Mimicry Functional Mimicry	0.090 ± 0.148 0.028 ± 0.042	$0.0073 \pm 0.007 \\ 0.0070 \pm 0.004$	$\begin{array}{c} 0.150 \pm 0.05 \\ \textbf{0.149} \pm \textbf{0.06} \end{array}$	1.42±0.5 1.18±0.5	40.0±15.0 32.3±15.7	0.053±0.03 0.069±0.03
ll Cup	Exact Mimicry Functional Mimicry	0.053 ± 0.093 0.007 \pm 0.004	$\begin{array}{c} 0.0059 \pm 0.009 \\ \textbf{0.0021} \pm \textbf{0.001} \end{array}$	0.179±0.09 0.116±0.05	1.63 ± 0.8 0.90 \pm 0.4	45.8±19.6 24.3±9.3	0.048 ± 0.02 0.071 ± 0.02
ets	Exact Mimicry Functional Mimicry	0.133 ± 0.144 0.064 \pm 0.065	$\begin{array}{c} 0.0149 \pm 0.008 \\ \textbf{0.0102} \pm \textbf{0.005} \end{array}$	0.218±0.10 0.158±0.06	2.42±1.9 1.35±0.7	71.1±71.5 35.9±20.8	$0.035 \pm 0.02 \\ 0.068 \pm 0.02$

The range values are standard deviations. The better value between the two telemanipulation paradigms for each measure is highlighted in bold [‡] The position and rotation errors were measured in the task-relevant degrees of freedom that do not have tolerances. In the writing task, all three rotational degrees of freedom had tolerances, so no rotation errors were measured

• Exploiting task tolerances leads to user perception and performance improvements.

This work was supported by Los Alamos National Laboratory and the Department of Energy, a University of Wisconsin Vilas Associates Award, and National Science Foundation award 1830242.